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We study the quantization of chiral QED with one family of massless fermions and the
Stueckelberg field in order to give mass to the Abelian gauge field in a BRST-invariant
way. We show that an extended Slavnov–Taylor (ST) identity can be introduced and
fulfilled to all orders in perturbation theory by a suitable choice of the local actionlike
counterterms, order by order in the loopwise expansion. This ST identity incorporates
the Adler–Bardeen anomaly and involves the introduction of a doublet (K ,c), whereK is
an external source of dimension 0 andc is the ghost field. By a purely algebraic argument
we show that the introduction of the sourceK trivializes the cohomology of the extended
linearized classical ST operatorS ′0 in the Fadeev–Popov (FP) charge+1 sector.

We discuss the physical content of the extended ST identity and prove that the
cohomology classes associated withS ′0 are modified with respect to the ones of the clas-
sical BRST differentials in the FP neutral sector (physical observables). This provides a
counterexample showing that the introduction of a doublet can modify the cohomology
of the model, as a consequence of the fact that the counting operator for the doublet (K ,
c) does not commute withS ′0.

We explicitly check that the physical states defined bys are no more physical
states of the full quantized theory by showing that the subspace of the physical states
corresponding tos is not left-invariant under the application of the S matrix, as a
consequence of the extended ST identity.
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1. INTRODUCTION

In perturbative quantum field theory, the full physics can be derived from the
quantum effective action0[φ, χ ], depending on the quantized fieldsφ and the
external sourcesχ coupled to local composite operatorsO(x). 0[φ, χ ] admits a
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formal power series expansion in the loop parameterh:

0[φ, χ ] =
∞∑

n=0

hn0(n)[φ, χ ]. (1)

The zeroth-order coefficient0(0) is identified with the classical action and it is
assumed to be a local functional ofφ andχ .

If 0[φ, χ ] is known, S matrix elements can be computed by using the LSZ
reduction formulae (Itzykson and Zuber, 1985). Connected amplitudes are gener-
ated by the Legendre transformW[ J, χ ] of 0[φ, χ ] with respect to the quantized
fieldsφ:

W[ J, χ ] = 0[φ, χ ] +
∫

d4x φJ, J = −δ0[φ, χ ]

δφ
. (2)

The physics is then recovered by computing the functional derivatives ofW with
respect to the external sources coupled to physical composite operators atJ =
χ = 0.

If 0(0) is power-counting renormalizable, the renormalization procedure (Velo
and Wightman, 1975) provides a way to compute all higher-order terms in the
expansion in Eq. (1), by fixing order by order only a finite set of local actionlike
counterterms. This procedure is a recursive one, since it allows to construct0(n)

once that0( j ), j < n , are known. From a combinatorial point of view, it turns out
that0 is the generating functional of the 1-PI renormalized Feynman amplitudes.

The behavior of the renormalized quantum effective action under an infinites-
imal variation of the quantized fields is embodied in the so-called Quantum Action
Principle (Breitenlohner and Maison, 1977; Lam, 1972, 1973; Lowenstein, 1971).
It states that for every local bilinear operatorsS, depending on a set of exter-
nal sourcesφ∗i coupled to local operatorsδφi polynomial in the fields and their
derivatives, the following relation holds true, to all orders in perturbation theory:

S(0) ≡
∫

d4x
∑

i

δ0

δφ∗i (x)

δ0

δφi (x)
=
∫

d4x
∑

k

δ0

δζk(x)

∣∣∣∣∣
ζk=0

. (3)

The operatorsδφi can be identified at the classical level with the infinitesimal trans-
formations of the fieldsφi . In the R.H.S. of Eq. (3)ζk are external sources coupled
to suitable local composite operatorsOk(x), with bounded dimension. Notice that
in general the external sources can have negative dimensions. Equation (3) states
that the application of the operatorS to 0 is equivalent to the insertion of the set
of local operatorsOk(x) to all orders in perturbation theory.

In some cases it happens that

S
(
0(0)

) = 0 (4)

but no choice of the local actionlike counterterms to be fixed order by order in
perturbation theory can be made in such a way that the R.H.S. of Eq. (3) is 0. In
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this case a classical symmetry is violated at the quantum level by the R.H.S. of
Eq. (3), and one usually speaks of an anomaly to describe this kind of behavior of
the quantum effective action (Piguet and Sorella, 1995).

In actual calculations, the possible breaking terms are considered order by
order in the loopwise expansion. Assume then that the effective action has been
constructed up to ordern− 1 so that

S(0)( j ) = 0, j = 0, . . . , n− 1. (5)

From Eq. (3) we see that

1(n) ≡ S(0)(n) (6)

is a local integrated polynomial in the fields and external sources and their deriva-
tives, with bounded dimension.

Let us now specialize to gauge theories. We identifyS with the Slavnov–
Taylor operator corresponding to the classical BRST symmetry (Becchiet al.,
1974; Tyutin and Lebedev, 1975). It turns out in this case that1(n) is further
constrained by a set of consistency conditions (Wess and Zumino, 1971), stemming
from the nilpotency of the BRST transformation. These consistency conditions are
written in a functional way as

S01
(n) = 0, (7)

whereS0 denotes the classical linearized ST operator

S01
(n) =

∫
d4x

∑
i

(
δ0(0)

δφ∗i (x)

δ1(n)

δφi (x)
+ δ1(n)

δφ∗i (x)

δ0(0)

δφi (x)

)
. (8)

Because of the nilpotency ofS0 and the locality of1(n), Eq. (7) provides a way to
characterize1(n) by studying the cohomology ofS0 in the space of Lorentz-
invariant local functionals with bounded dimension and Faddeev–Popov (FP)
charge+1 (Piguet and Sorella, 1995). If the only solutions to Eq. (7) are co-
homologically trivial, then it can be shown that the ST identities can be restored
at thenth order by a suitable choice ofnth-order actionlike counterterms. Other-
wise the breaking term1(n) can never be reabsorbed by a choice of thenth-order
actionlike counterterms, and the theory is truly anomalous.

We notice that the recursive assumption in Eq. (5) is essential in this process: if
one fails to restore the ST identities at lower orders, then1(n) actually turns out to be
a nonlocal functional of the fields and external sources and their derivatives, hence
it cannot be removed by a suitable choice ofnth-order actionlike counterterms
even for cohomologically nonanomalous theories (Picariello and Quadri, 2001).

In this standard approach of studying which symmetries are preserved upon
quantization, only a small consequence of the QAP is used, i.e. the locality of the
operatorsOk(x) in the R.H.S. of Eq. (3) is invoked to guarantee that1(n) in Eq. (6)
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is a classical local polynomial in the fields and external sources and their derivatives
of bounded dimension, provided that Eq. (5) is satisfied. The full power of the QAP
in Eq. (3), i.e. the fact that the application of the operatorS to 0 is equivalent to
the insertion of the set of local operators in the R.H.S. of Eq. (3), to all orders in
perturbation theory and independently of the actionlike local counterterms chosen
order by order in perturbation theory, remains somewhat unexploited.

A more effective, alternative approach to use Eq. (3) would be to regard
the anomaly as a quantum modification of the operatorS, whose deformation is
given by

1S(0) ≡ −
∫

d4x
∑

k

δ0

δζk(x)

∣∣∣∣∣
ζk=0

. (9)

In this way there is a symmetry obeyed by the quantum effective action0:

(S +1S)(0) = 0. (10)

Recently it has also been pointed out that the introduction of suitably defined
external sourcesζk allows to construct an extended linearized classical ST operator,
trivializing the cohomology of the model (Barnich, 2000).

In the present paper we apply this approach to chiral QED with one family
of massless fermions. We introduce the Stueckelberg field in order to give mass to
the Abelian gauge field in a BRST-invariant way. We study the quantization of the
model and show that an extended ST identity can be introduced and fulfilled to all
orders in perturbation theory by a suitable choice of the local actionlike counter-
terms, order by order in the loopwise expansion. This ST identity incorporates the
Adler–Bardeen anomaly.

We point out that the corresponding linearized classical ST operator is nilpo-
tent. However, the physical observables (defined as the cohomology classes of the
linearized classical ST operator in the space of local FP neutral functionals) turn out
to be modified with respect to the ones induced by the classical BRST differentials.
Moreover, the space of asymptotic states that are physical according to the clas-
sical BRST differentials is not invariant under the S matrix. This is a consequence
of the extended ST identities obeyed by the quantum effective action0.

2. EXTENDED ST IDENTITIES FOR CHIRAL QED

We consider the classical Lagrangian of chiral QED with one family of mass-
less fermions and a massive gauge fieldAµ:

L = −1

4
F2
µν + i ψ̄D/ψ + 1

2
m2A2

µ +
α

2
b2− αb∂A

+ 1

2
∂µB∂µB− m2

2α
B2+ αc̄¤c+m2c̄c. (11)
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Dµ is the covariant derivative

Dµ = ∂µ − i e
(1+ γ 5)

2
Aµ. (12)

B is the Stueckelberg field (Delbourgoet al., 1988; Glauber, 1953; Grassi and
Hurth, 2001; Slavnov, 1972; Stueckelberg, 1938),b is the Nakanishi–Lautrup
field (Lautrup, 1967; Nakanishi, 1966).c andc̄ are the ghost and antighost fields,
respectively.α is the gauge-fixing parameter.

We assign the FP charge by requiring thatAµ, ψ, ψ̄ , b, andB have FP charge
0, c̄ has FP charge−1, andc has FP charge+1.

L is invariant under the following BRST transformations:

s Aµ = ∂µc, sc̄ = b+ m

α
B, sb= −m2

α
c, sB= mc,

sψ = i e
(1+ γ 5)

2
ψc, sψ̄ = −i ecψ̄

(1− γ 5)

2
, sc= 0. (13)

s is nilpotent. In order to define at the quantum level the composite operatorssψ
andsψ̄ appearing in Eq. (13) one has to couple them in the classical action0(0) to
classical external sources ¯η andη (known as antifields in the Batalin–Vilkovisky
formalism (Gomiset al., 1995):

0(0) =
∫

d4x

(
L− i eη̄

(1+ γ 5)

2
ψc− i ecψ̄

(1− γ 5)

2
η

)
. (14)

The invariance of0(0) under the BRST differentials is now expressed as (Zinn-
Justin, 1975)

S
(
0(0)

) ≡ ∫ d4x

(
∂µc

δ0(0)

δAµ
+
(
b+ m

α
B
) δ0(0)

δc̄
+mc

δ0(0)

δB

− m2

α
c
δ0(0)

δb
+ δ0

(0)

δη̄

δ0(0)

δψ
+ δ0

(0)

δη

δ0(0)

δψ̄

)
= 0. (15)

In the above equation we have introduced the ST operatorS. The bilinear part is
only reduced to the fermion sector since the BRST variations ofAµ andc̄, being
linear in the quantized fields, do not require the introduction of the corresponding
antifields. The requirement that0(0) is FP neutral implies that the antifieldsη and
η̄ carry FP charge−1.

The dependence of0(0) onb, B, andc̄ is given by

δ0(0)

δb
= αb− α∂A,

δ0(0)

δB
= −

(
¤+ m2

α

)
B, (16)
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and

δ0(0)

δc̄
= α¤c+m2c. (17)

The last equation is known as the classical ghost equation. The R.H.S.s of Eqs. (16)
and (17) are linear in the quantized fields, hence we can preserve the above equa-
tions at the quantum level by a suitable choice of local actionlike counterterms,
order by order in the perturbative expansion.

So we require that the full quantized effective action0 satisfies the conditions

δ0

δb
= αb− α∂A,

δ0

δB
= −

(
¤+ m2

α

)
B, (18)

and

δ0

δc̄
= α¤c+m2c. (19)

The second of Eqs. (18) entails thatB is a free field. By Eq. (19) the ghost field
decouples.

We notice that the classical action0(0) in Eq. (14) is CP-even. We require that
the full quantized effective action0 is also CP-even.

By the QAP and Eq. (15), the first-order ST breaking term

1(1) ≡ S(0)(1) (20)

is a Lorentz-invariant integrated polynomial in the fields and the external sources
and their derivatives with dimension less or equal to 5 and FP charge 1.1(1)

satisfies the Wess–Zumino consistency condition

S0
(
1(1)

) = 0, (21)

whereS0 is the classical linearized ST operator given by

S0 =
∫

d4x

(
∂µc

δ

δAµ
+
(
b+ m

α
B
) δ

δc̄
+mc

δ

δB
− m2

α
c
δ

δb

+ δ0
(0)

δη̄

δ

δψ
+ δ0

(0)

δψ

δ

δη̄
+ δ0

(0)

δη

δ

δψ̄
+ δ0

(0)

δψ̄

δ

δη

)
. (22)

Taking into account the fact that0 is CP-even, the solution of Eq. (21) is (Barnich
and Henneaux, 1994).

1(1) = r
∫

d4x cεµνρσ ∂
µAν∂ρAσ + S0

(
4(1)

)
(23)

for some local actionlike functional4(1). The breaking termS0(4(1)) can be reab-
sorbed by adding to0(1) the counterterm functional−4(1). This amounts to change
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the first-order normalization conditions (Ferrariet al., 2000; Ferrari and Grassi,
1999).

1(1) is thus reduced to the following Adler–Bardeen chiral anomaly:

1
(1)
AB = r

∫
d4x cεµνρσ ∂

µAν∂ρAσ . (24)

for some nonzeroc-numberr . r cannot be set equal to 0 by any choice of the
local actionlike first-order counterterms in0(1). The ST breaking in Eq. (24) is
an anomalous one. As a consequence, the second-order ST breaking term1(2) =
S(0)(2) turns out to be a nonlocal functional of the fields and external sources and
their derivatives (Picariello and Quadri, 2001).

Owing to the Abelian character of the model, we can write from Eq. (24)

S(0)(1) = r
∫

d4x cεµνρσ ∂
µAν∂ρAσ =

∫
d4x c

δ0(1)

δK
. (25)

This is only possible since the ghost field decouples in the Abelian case, because
of the ghost equation in Eq. (19).K is an external source coupled in0(1) to the
Adler–Bardeen termεµνρσ ∂µAν∂ρAσ . Notice thatK has dimension 0.

In the spirit of Eq. (10), we can deform the operatorS into S ′ defined by

S ′ ≡ S +
∫

d4x c
δ

δK
. (26)

It then follows that

S ′(0)(1) = 0. (27)

One should regard the operatorS ′ in Eq. (27) as defining the (extended) chiral
symmetry of the model.

We now show that the ST identity associated withS ′ can be restored to all
orders in perturbation theory. The proof is a recursive one.

For n = 0 we have

S ′
(
0(0)

) = 0 (28)

since0(0) does not depend onK . For n = 1 the extended ST identity is satisfied
(see Eq. (27)). Assume that it is fulfilled till ordern− 1:

S ′(0)( j ) = 0, j = 0, 1,. . . , n− 1. (29)

We shall prove that the extended ST identity can be fulfilled at thenth order by a
suitable choice of thenth-order local counterterms. We point out that sinceK has
dimension 0, power-counting arguments cannot be effectively used to constrain
the dependence of1(n) on K .
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We first notice that the following algebraic identity holds true for every
bosonic functional0:

S ′0(S ′(0)) = 0, (30)

whereS ′0 is the linearized extended ST operator for0:

S ′0 =
∫

d4x

(
∂µc

δ

δAµ
+
(
b+ m

α
B
) δ

δc̄
+mc

δ

δB
− m2

α
c
δ

δb

+ δ0
δη̄

δ

δψ
+ δ0

δψ

δ

δη̄
+ δ0
δη

δ

δψ̄
+ δ0

δψ̄

δ

δη
+ c

δ

δK

)
. (31)

By using Eqs. (30) and (29) we obtain the following Wess–Zumino consistency
condition for thenth-order breaking term1(n) ≡ S ′(0)(n):

S ′0
(
1(n)

) = 0, (32)

whereS ′0 is the extended classical linearized ST operator given by

S ′0 =
∫

d4x

(
∂µc

δ

δAµ
+
(
b+ m

α
B
) δ

δc̄
+mc

δ

δB
− m2

α
c
δ

δb
+ δ0

(0)

δη̄

δ

δψ

+ δ0(0)

δψ

δ

δη̄
+ δ0

(0)

δη

δ

δψ̄
+ δ0

(0)

δψ̄

δ

δη
+ c

δ

δK

)
= S0+

∫
d4x c

δ

δK
. (33)

Notice thatS ′20 = 0. By the QAP,1(n) is a local functional of the fields and external
sources with dimension less or equal to 5 and FP charge+1.

By explicit computation it can be shown by using Eqs. (18) and (19) that1(n)

does not depend onb, B, andc̄ and is a functional ofAµ, c, ψ̄ , ψ, η, andη̄ only.
Moreover, by power counting1(n) cannot depend onη andη̄. Having ruled

out the dependence on all fields and external sources with negative FP charge, we
see that1(n) depends on the ghost fieldc only linearly:∫

d4x c
δ1(n)

δc
= 1(n). (34)

We notice that1(n) is a polynomial with respect to the quantized fieldsAµ, ψ ,
andψ̄ , since they have positive dimension. However, it can be a truly formal power
series in the dimensionless external sourceK .

We now show that1(n) is theS ′0 image of a local actionlike functional (i.e. the
cohomology ofS ′0 is empty). For this purpose we introduce the counting operator
for K ,

N =
∫

d4x K
δ

δK
, (35)
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and decompose1(n) according to the degree induced byN ,

1(n) =
∞∑
j=0

1
(n)
j , N1(n)

j = j1(n)
j . (36)

We can always reabsorb1(n)
0 in Eq. (36). Indeed, by standard cohomological

results (Barnich and Henneaux, 1994; Piguet and Sorella, 1995) and taking into ac-
count the CP-evenness of0, it is known that1(n)

0 can always be reduced by adding
suitable localnth-order counterterms independent ofK to the Adler–Bardeen term:

1
(n)
0 = r (n)

∫
d4x cεµνρσ ∂

µAν∂ρAσ. (37)

This is compensated by the counterterm

4
(n)
0 ≡ −r (n)

∫
d4x Kεµνρσ ∂

µAν∂ρAσ. (38)

Assume now that1(n)
j = 0 for j = 0, . . . , m− 1. We show that one can add

suitably defined local actionlike counterterms to0(n) in such a way that1(n)
m is

also 0. For this purpose we define the operator (Zumino, 1983)

H =
∫ 1

0
dt
∫

d4x Kλt
δ

δc
. (39)

In the previous equation we have introduced the operatorλt given by

λt1
(n)(c, K , ϕ) = 1(n)(tc, t K , ϕ), (40)

where we have denoted byϕ all fields and external sources other thanc andK on
which1(n) might depend.H is a contracting homotopy for the differential

σ =
∫

d4x c
δ

δK
, (41)

since

{H, σ }1(n)(K , c, ϕ) =
∫ 1

0
dt
∫

d4x

(
Kλt

δ

δK
+ cλt

δ

δc

)
1(n)(K , c, ϕ)

= 1(n)(K , c, ϕ)−1(n)(0, 0,ϕ). (42)

We now notice that the following identity holds true for any functional1(n)

obeying Eq. (34):

{H, σ }1(n)(K , c, ϕ) = S ′0
(
H1(n)

)− S0
(
H1(n)

)
, (43)

so that by Eq. (42)

1(n)(K , c, ϕ)−1(n)(0, 0,ϕ) = S ′0
(
H1(n)

)− S0
(
H1(n)

)
. (44)
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By assumption we can write

1(n) =
∑
k≥m

1
(n)
k . (45)

Inserting Eq. (45) in Eq. (44) we obtain

1(n)(K , c, ϕ)−1(n)(0, 0,ϕ) =
∑
k≥m

1
(n)
k = S ′0

(
H1(n)

)− S0
(
H1(n)

)
(46)

and finally ∑
k≥m

1
(n)
k − S ′0

(
H1(n)

) = −S0
(
H1(n)

)
. (47)

SinceS0 does not depend onK , the R.H.S. of Eq. (47) admits an expansion
according to the degree induced byN starting fromm+ 1. Hence1(n)

m can be set
equal to 0 by adding to0(1) the counterterm

4(n)
m ≡ H1(n) = −

∫
d4x

∫ 1

0
dt Kλt

δ1(n)

δc
. (48)

This concludes the proof that the extended ST identity can be restored to all orders
in perturbation theory.

3. PHYSICAL OBSERVABLES

We have shown that the quantum effective action0 satisfies the extended ST
identity

S ′(0) = 0. (49)

Moreover, the corresponding linearized classical ST operatorS ′0 is nilpotent. We
now investigate the consequence on the physics of the extended ST identity in
Eq. (49). We identify physical observables with the cohomology classes of the ex-
tended linearized ST operatorS ′0 in the space of local functionals with FP charge 0.
The physical observables generated byS ′0 are different from the ones obtained from
S0. In the present model the latter coincide with the ones obtained froms (Barnich
and Henneaux, 1994). We first work out an example and then discuss the general
situation.

We consider the gauge mass term

M =
∫

d4x
1

2
m2A2

µ. (50)

M is neither anS0-invariant nor anS ′0-invariant. However, the functional

MK ≡M+m2
∫

d4x

(
K∂A− 1

2
K¤K

)
(51)
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is anS ′0-invariant. By explicit computation it can be verified thatMK is not the
S ′0 variation of any local functional with FP charge−1, hence it identifies a true
observable of the theory. Notice thatM is not anS0-invariant, thus it does not
belong to the cohomology ofS0 in the space of local functionals with FP charge 0.

We now go on shell by imposing the conditions

J = −δ0
δφ
= 0, χ = 0. (52)

The second of the conditions in Eqs. (52) entailsK = 0, hence on shell the repre-
sentativeMK has to be identified withM: the mass term for the gauge field is an
on-shell observable of the model.

This mechanism of extension of the cohomology due to the introduction of
the sourceK applies to the whole FP neutral sector of local functionals. LetG be
a local functional with FP charge 0. Then1′ ≡ S ′0(G) is a local functional with
FP charge+1, and by the arguments of the previous section there exists a local
functionalRdepending onK and all other fields and external sources of the model
such that

1′ = S ′0(R). (53)

R is not uniquely defined. Notice in particular thatR can be chosen in such a way
thatR |K=0= 0. This follows from the arguments of Section 2.

Hence

S ′0(G −R) = 0. (54)

This means that

GK ≡ G −R (55)

is a representative of the cohomology class of a local observableO.
Going on shell,GK reduces toG; hence in the extended theory governed by

S ′0 every functional whoseS ′0 variation is nonzero is actually a representative of
an on-shell local observable.

We conclude that the physical content of the quantized theory governed by
S ′0 has changed with respect to the classical theory, whose physics is described by
the local FP neutral cohomology classes of the classical BRST differentials.

This can also be checked by studying the time-evolution of the asymptotic
states that are physical according to the classical BRST differentials.

We follow the technique discussed in Becchi (1983). According to the reduc-
tion formulae the connected S matrix can be expressed as

S=: 6 : W[ J, χ ] |J=χ=0, (56)
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where the operator6 is defined by

: 6 :=: exp

(∫
d4x d4yϕi (x)0i j (x − y)

δ

δJj (y)

)
:, (57)

and :: stands for normal ordering.ϕi are linear combinations of the asymptotic
fieldsφas

i ,

ϕi = ai j φ
as
j , (58)

where the matrixai j is invertible (Becchi, 1983). In Eq. (57) we have denoted by
subscripts the functional differentiation with respect to the arguments of0[φ, χ ]
evaluated atφ = χ = 0:

0i j (x − y) ≡ δ20

δφi (x)φ j (y)

∣∣∣∣
φ=χ=0

. (59)

In the following,Jc denotes the external source coupled toc, Jµ the source coupled
to Aµ, Jc̄ the one coupled tōc, and so on.

The extended ST identity on the connected generating functionalW[ J, χ ]
reads

S ′(W) = S(W)−
∫

d4x
δW

δJc

δW

δK
= 0, (60)

with S(W) given by

S(W) = −
∫

d4x

(
∂µ
δW

δJc
Jµ +

(
δW

δJb
+ m

α

δW

δJB

)
Jc̄ +m

δW

δJc
JB

− m2

α

δW

δJc
Jb + δW

δη̄
Jψ + δW

δη
Jψ̄

)
. (61)

We introduce the operatorQ (Curci and Ferrari, 1976; Kugo and Ojima, 1978)
acting on the fieldsϕi defined by

[Q, Aµ] = ∂µc, {Q, c} = 0, {Q, c̄} = b+ m

α
B, [Q, B] = mc,

[Q, b] = −m2

α
c, {Q, ψ} = 0, {Q, ψ̄} = 0. (62)

Q expresses the action induced by the classical BRST differentialson the fieldsϕi .
Notice thatQ is nilpotent. The physical subspace corresponding to the cohomology
generated by the classical BRST differentials can be identified with kerQ/ImQ.
However,Q does not commute with the S matrix.
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For that purpose, we first compute [Q, : 6 :] and get (in the momentum space
representation)

[Q, : 6 :] = :
∫

d4 p

[
c

(
i pµ0µν − m2

α
0bν +m0Bν

)
δ

δJν
+ c

(
i pµ0µB

− m2

α
0bB +m0B B

)
δ

δJB
+ c

(
i pµ0µb − m2

α
0bb+m0Bb

)
δ

δJb

+
(
b+ m

α
B
)
0c̄c

δ

δJc

]
6 :

= :
∫

d4 p

[
c

(
i pµ0µν − m2

α
0bν

)
δ

δJν
+ cm0B B

δ

δJB

+ c

(
i pµ0µb − m2

α
0bb

)
δ

δJb
+
(
b+ m

α
B
)
0c̄c

δ

δJc

]
6 : . (63)

In the second line of the above equation we have taken into account Eqs. (18).
We then use the extended ST identity to constrain the two-point functions

appearing in Eq. (63):

δ2S ′(0)

δcδAν

∣∣∣∣
φ=χ=0

= i pµ0µν − m2

α
0νb + 0νK = 0,

δ2S ′(0)

δcδB

∣∣∣∣
φ=χ=0

= m0B B + m

α
0cc̄ = 0, (64)

δ2S ′(0)

δcδb

∣∣∣∣
φ=χ=0

= i pµ0µb + 0cc̄ − m2

α
0bb = 0,

by using again Eqs. (18). We now insert Eqs. (64) into Eq. (63) and get

[Q, : 6 :] =:
∫

d4 p

[
−c0νK

δ

δJν
+ b0c̄c

δ

δJc
− c0cc̄

δ

δJb
− m

α
c0cc̄

δ

δJB

+ m

α
B0c̄c

δ

δJc

]
6 : (65)

One also gets

[: 6 :, S] =:
∫

d4 p

[
(−Aµ0µK + b0c̄c)

δ

δJc
− c0cc̄

δ

δJb

− m

α
B0c̄c

δ

δJc
− m

α
c0cc̄

δ

δJB

]
6 : (66)

This follows by explicit computation once that Eqs. (64) are taken into account.
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By combining Eqs. (65) and (66) we get

[Q, : 6 :] = [: 6 :, S]+ :
∫

d4 p

(
Aµ0µK

δ

δJc
− c0νK

δ

δJν

)
6 : . (67)

We now notice that

[: 6 :, S](W) |J=χ=0 = :6 :

(∫
d4x

δW

δJc

δW

δK

)∣∣∣∣
J=χ=0

. (68)

In the Abelian case we can use the ghost equation in Eq. (19) to obtain from
Eq. (68)

[: 6 :, S](W) |J=χ=0 = :
∫

d4x c(x)
δ

δK (x)
6 : W

∣∣∣∣
J=χ=0

. (69)

Hence by Eq. (69)

[Q, S] = [Q, : 6 :]W |J=χ=0

= :
∫

d4 p

(
Aµ0µK

δ

δJc
− c0νK

δ

δJν
+ c

δ

δK

)
6 : W

∣∣∣∣
J=χ=0

. (70)

The R.H.S. of Eq. (70) is 0 if

δW

δK
= δ0

δK
= 0. (71)

The above equation is satisfied at tree level, but cannot hold true at the quantum
level because of the appearance of the Adler–Bardeen anomaly. We thus conclude
that the physical subspace associated to the classical BRST differentials is not
invariant under the application of the S matrix.

As a final point of this section, we notice that the cohomology of a nilpotent
differentialδ is known to be independent of the doublet (z, w), δz= w, δw = 0,
whenever (Piguet and Sorella, 1995)

[δ,N ] = 0, (72)

whereN is the counting operator for the doublet (z, w):

N =
∫

d4x

(
z
δ

δz
+ w

δ

δw

)
. (73)

The analysis carried out in this section shows that this result cannot be extended to
more general situations where Eq. (72) is not fulfilled: for the extended linearized
ST operatorS ′0 Eq. (72) is not satisfied and the cohomology ofS ′0 in the FP neutral
sector is actuallyK-dependent.
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4. CONCLUSIONS

In this paper we have performed the quatization of chiral QED with one family
of massless fermions. We have introduced the Stueckelberg field in order to give
mass to the Abelian gauge field in a BRST-invariant way and we have shown that
an extended ST identity can be introduced and fulfilled to all orders in perturbation
theory by a suitable choice of the local actionlike counterterms, order by order in
the loopwise expansion.

This ST identity incorporates the Adler–Bardeen anomaly and involves the in-
troduction of an external sourceK of dimension 0. By a purely algebraic argument
we have shown that the introduction of the sourceK trivializes the cohomology
of the extended linearized classical ST operatorS ′0 in the FP charge+1 sector.

We have then discussed the physical content of the extended ST identity. We
have shown that the cohomology classes associated withS ′0 are modified with
respect to the ones ofS0. This provides a counterexample showing that, if the
counting operator for the doublet (z, w) does not commute with the nilpotent
differential δ under which (z, w) forms a doublet, the cohomology ofδ actually
depends on (z, w). Hence the local physics generated byS ′0 is modified with respect
to the one issued fromS0. Since the latter is the same as the one generated from the
classical BRST differential, the physical states corresponding tos do not survive
quantization. We have explicitly checked this result by showing that the subspace
of the physical states corresponding tos is not left-invariant under the application
of the S matrix, as a consequence of the extended ST identity satisfied by the
quantum effective action0.
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